

Hepatic Injury Secondary to Renal Ischemia-Reperfusion (I/R) Injury: Possible Role of Nitric Oxide

• Seisa Mohamed¹, Khaled Hazem¹, Hussein Abd El-aziz², Ali Mie³, Ezzat Amel¹, Baiomy Azza¹, Sheashaa Hussein⁴, Sobh Mohamed⁴

1- MERC (Medical Experimental Research center), Faculty Of Medicine, Mansoura University, Egypt

2- Medical Physiology Department, Faculty Of Medicine, Mansoura University, Egypt

3- Pathology Department, Faculty Of Medicine, Mansoura University, Egypt

4- Urology and Nephrology Department, Faculty Of Medicine, Mansoura University, Egypt

Abstract

Renal I/R injury is a common clinical problem that encountered in many conditions such as transplantation, partial nephrectomy, and aortic cross clamping (1). Recent studies have suggested cross-talk between the liver and kidneys and found that any injury to either of them may affect the other. Liver injury is one of the distant-organ damages induced by kidney I/R (2). There remains continuing uncertainty about the role of NO in renal I/R injury with theoretical and experimental evidences offering support for both toxic (3) and protective roles (4).

Objectives

- 1. To declare the probability of liver affection consequent to renal I/R
- 2. To study the role of NO (toxic or protective) in the pathogenesis of this probable hepatic affection

Methods

48 Sprague-Dawley rats (250-300 g) divided randomly into 4 equal groups:

- A. Group I (Sham-operated)
- B. Group II (I/R injury)
- **C. Group III** (I/R injury with administration of L-arginine; 300 mg/kg IV 20 min before ischemia)
- **D. Group IV** (I/R injury with administration of N- omeganitro-L-arginine methyl ester (L-NAME); 50 mg/kg in IV 20 min before ischemia).
- •Kidney functions tests (serum creatinine and BUN), liver enzymes (ALT, AST) were measured at 2 hrs after reperfusion.
- Malondialdehyde (MDA), catalase, reduced glutathione (GSH) and NO were assessed at 2 hrs after reperfusion in liver tissues.
- •Histopathology (H&E stain) of the liver also was examined.

Results

I/R group showed significant elevation in **liver enzymes** (AST and ALT) and minimal **histopathological damage** of liver compared to sham group (p< 0.001).

Administration of either **L-arginine** (NO precursor) or **L-NAME** (non-selective inhibitor of NOS) caused significant worsening of liver enzymes and pathology ($p \le 0.028$) than I/R group.

NO concentration in liver tissues was significantly increased in L-arginine group and decreased in L-NAME group compared to control group (p< 0.001).

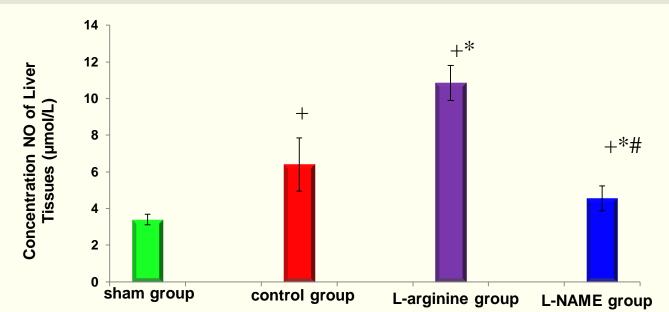


Figure (1)

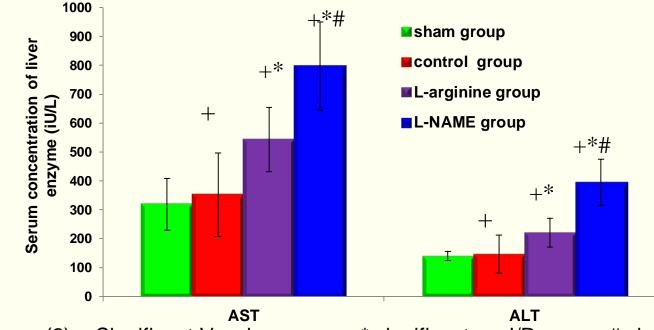


Figure (2) + Significant Vs. sham group, * significant vs. I/R group, # significant vs. L-arginine group

There were significant increase in **MDA** (marker of lipid peroxidation) and **GSH** and catalase (antioxidants) concentrations in liver tissue in I/R group (p< 0.001) .Moreover, further significant increase in **MDA** and significant decrease in **GSH** and catalase concentrations in liver was shown in L-NAME and L-arginine groups compared to I/R group (p< 0.001)

Table (1): Effects of 45 min bilateral renal ischemia on liver concentration of NO, MDA, GSH, and catalase

ı		Sham group	Control group	L-arginine group	L-NAME group
	NO (umol/L)	3.4 ± 0.29	6.4 ± 1.46	10.85 ± 0.95	4.55 ± 0.68
	MDA (nmol/gm liver)	10.34 ± 1.45	15.43 ± 2.27	19.85 ± 1.97	20.189 ± 1.148
	GSH (mg/gm liver)	146.65 ± 29.22	197.9 ± 44.215	85.75 ± 5.29	121.75 ± 17.82
	Catalase (U/gm liver)	0.25 ± 0.07	0.33 ± 0.02	0.19 ± 0.05	0.20 ± 0.07

Fig. (A): Specimens of liver tissues.= normally appeared liver architecture (H&E X200) group); Fig. (B): Normal liver with characteristic pattern of the trabeculae hepatocytes between central veins and portal areas (H&E X200) (control group); Fig. (C): Liver focal degenerative changes in the form of hyperchromatic large nuclei and frequent mitosis (white arrows) (H&E X400) (Larginine group); **Fig. (D):** liver with focal ischemic changes mainly in zone 3 with areas of haemorrhage (H&E X200) (L-NAME group).

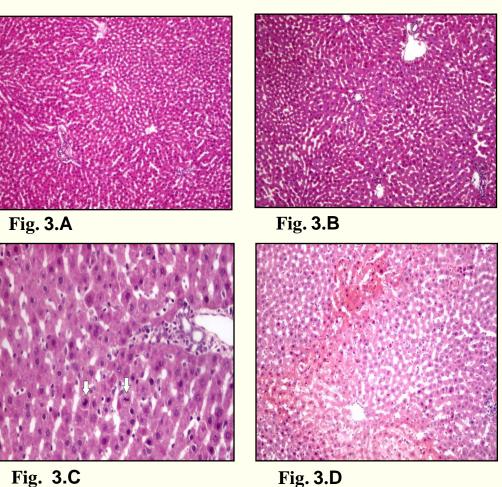


Figure (3)

Conclusions

Endogenous NO has a protective effect against hepatic injury induced by renal I/R injury, while exogenous NO by L-arginine worsens the hepatic injury induced by renal I/R injury. This probably is due to increased formation of reactive oxygen species.

References

- Interaction of eicosanoids and nitric oxide in renal reperfusion injury. Transplantation 2001; 72:614-619
- 2. Exaggerated Liver Injury Induced by Renal Ischemia Reperfusion in Diabetes: Effect of Exenatide. Saudi J Gastroenterol. 2010; 16(3): 174–180.
- 3. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61: 855–861, 2002
- 4. Acute renal failure. N Engl J Med 334: 1448–1460, 1996